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Abstract

A large body of epidemiologic literature supports an inverse relation between birth weight and both systolic blood pressure

and prevalence of hypertension, but mechanisms through which lower birth weight increases risk for hypertension are not

established. This article advances the view that 1) permanently reduced nephron number is essential but not alone sufficient

to mediate nutritionally induced hypertension; and 2) fetally programmed propensity for increased appetite and accelerated

postnatal growth, thus generating inappropriately increased body mass, is a necessary ‘‘second hit’’ to actualize hypertension

vulnerability. Based on decadesof nephrologic research, this increased ratio of body mass (excretory load) tonephron number

(excretory capacity) induces intrarenal compensations (tubular andglomerular hypertrophywith single-nephronhyperfiltration

and intrarenal renin-angiotensin II activation), which maintain normal glomerular filtration rate at the expense of systemic and

glomerular hypertension and at the risk of progressive renal disease. The vigor of the intrarenal compensatory responses is

markedly greater in the immature than in the mature kidney, potentially explaining the greater risk of nephron deficits being

present early in life as compared with the minimal risk in adult kidney donors. Effective interventions have not yet been

defined. Suboptimal maternal nutrition, pervasive in both developed anddeveloping countries, offers a window of opportunity

to enhance the cardiovascular and renal health of future generations. J. Nutr. 137: 1066–1072, 2007.

Professor David J. P. Barker demonstrated that birth weight
across the normal range, a surrogate for fetal nutrition, was
inversely proportional to the risk of cardiovascular disease,
including hypertension (1,2). The ‘‘Barker Hypothesis’’ proposed
that adverse events in utero induce compensatory responses in
the fetus that, reflecting the plasticity of this developmental
period, persist permanently and thus define an altered phenotype
at birth (3). The process has been termed ‘‘programming’’ and
may be expressed in alterations in organ structure or function
and in setpoints of homeostatic systems. Programming limits the
range of postnatal adaptability, thus creating disease vulnera-
bility: a postnatal environment substantially altered from the

prenatal setting may present challenges that the programmed
organism cannot meet without significant biological costs (4).
Disease expression can be viewed as an interaction between the
nutritionally programmed birth phenotype and the postnatal
environment. Key postnatal factors now known to increase dis-
ease risk include nutrient availability (5,6) and disease-specific
patterns of infant and childhood growth (7). Since its original
formulation, the evidence for developmental origins of modern
diseases has expanded to incorporate not only the individual
elements of the metabolic syndrome but also renal insufficiency/
failure (8), asthma (9), osteoporosis (10), mental illness (11), and
cancer (12). This article focuses on the effects of fetal undernu-
trition to permanently reduce nephron number, the mechanisms
by which this may create vulnerability to hypertension, and the
evidence for postnatal factors that further enhance disease risk.
We advance the thesis that reduced nephron number is an essen-
tial, but not sufficient, condition for nutritionally induced hyper-
tension and that additional nutritionally programmed pathways
must interact postnatally to actualize disease expression.

Evidence that asymmetric growth restriction reflects

clinically significant nutritional programming

Although birth weight has proved to be a surprisingly robust
surrogate for the fetal growth environment, the more specific
indicator of significant fetal nutrient deficiency is the particular
form of intrauterine growth impairment termed ‘‘asymmetric
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growth restriction.’’ This defined birth phenotype is believed to
reflect a stereotypical fetal response to stress (e.g., hypoxia); it
involves redistribution of blood flow away from most intra-
abdominal organs (kidney, liver, pancreas) and away from
skeletal muscle in favor of organs more immediately crucial to
fetal well-being (heart, brain, adrenal gland). As a result, body
weight is reduced to a greater degree than length, yielding thin
infants; liver, kidney, and pancreas are reduced in size to a
relatively greater degree than heart, brain, and adrenals (13). The
asymmetric growth-restricted phenotype is obstetrically diag-
nosed only if birth weight (adjusted for gestational age) is below
the 10th percentile. However, as more is learned, we may find that
the growth-restricted phenotype occurs throughout the lower
half of the normal birth-weight range and may provide a more
precise marker of nutritional programming than birth weight.

Evidence that the fetal environment modifies risk

of hypertension

As of 2000, over 80 publications have substantiated the inverse
relation between systolic blood pressure (BP)3 and birth weight
in humans (14). Godfrey et al. (15), relating direct measures of
maternal nutrition in early pregnancy (triceps skin thickness) to
offspring systolic BP at age 11 y, demonstrated a significant
inverse relation even at this young age. The birthweight-systolic
BP relation is enhanced by increasing adult BMI level (16) and
by above-average height (17), suggesting an interaction between
birth weight and postnatal gain in body mass. Initial concerns
about the significance of the inverse BP-birth weight relation
centered around inherent limitations of data sets, the small
change in average BP across birth weights, and the need to adjust
for current body weight to show the birth weight influence (18).
However, new developments mute these arguments. First,
studies of the 1966 Northern Finland cohort, incorporating a
wide variety of annotated maternal information, demonstrated a
strong inverse relation of systolic BP and birth weight indepen-
dently of current body weight (Fig. 1) (19), as did those of
Primatesta et al. from the Health Survey for England (20). Second,
well-controlled animal models in multiple species have shown
hypertensive effects in prenatally undernourished offspring ½re-
viewed in Armitage et al. (21)�. Third, clinical trials examining
long-term outcomes have clearly documented the cardiovascular
impact of small differences in average BP in large populations (22).

Perhaps more directly relevant to long-term human health are
the studies that assess the impact of birth weight not on aver-
age BP but on the cumulative prevalence of hypertension. The
American Nurses Study I (23) assessed a cohort of women on 2
successive occasions: at ages 30–55 and again 15 y later at ages
46–71 y. Results showed not only that prevalence of hyperten-
sion was inversely related to birth weight but additionally that
the relation was amplified with aging: lower birth weight in-
creased prevalence of hypertension by ;3% at the younger ages
but by ;8.5% at the older ages (23). Collectively, these obser-
vations compel the conclusion that an impaired fetal growth
trajectory conveys vulnerability to, but does not alone ensure,
the later development of hypertension.

Evidence that fetal undernutrition permanently reduces

nephron number

Brenner and Chertow were the first to suggest that the reduced
nephron number associated with low birth weight could increase

risk of both hypertension and chronic renal disease/renal failure
(24). To understand the effect of fetal nutrient restriction on renal
development, a brief review of nephrogenesis is germane. The
final mammalian kidney, the metanephros, develops from 8 wk of
gestation in humans, but fully two-thirds of the nephrons form
during the third trimester (25). No new nephrons form after 36 wk
of gestation. The process of branching morphogenesis involves
ingrowth of the ureteral bud into the metanephric mesenchyme
and subsequent dichotomous branching, each terminal branch
giving rise to a single nephron with its linked glomerulus. This
process occurs in an outward direction, laying down concentric
layers of nephron units with newly forming, immature nephrons
in the outermost (nephrogenic) layer. Slowing of this process dur-
ing a temporally finite window of development reduces number of
layers, yielding normally formed but fewer nephrons.

Based on gold standard stereologic techniques for estimating
glomerular number, autopsy studies have shown that obstetri-
cally defined intrauterine growth retardation (IUGR) is associ-
ated with reduced nephron number in human infants (26,27),
confirming earlier estimates. In a range of animal species, ex-
perimental maternal undernutrition or placental insufficiency
have now been reproducibly associated with reduced nephron
number (28–38) and typically with elevated BP (Table 1). In
both human (27) and experimental IUGR, nephron number is
commonly reduced on the order of 25–30% (Table 1), sug-
gesting the possibility that a finite fraction of total nephrons are
subject to nutritional modulation.

The nephropenia observed in human IUGR and in experi-
mental undernutrition in animals reflects a relatively severe form
of growth restriction, is associated with the asymmetric growth-
restriction phenotype, and by definition represents the lowest
centile of birth weights. Can reduced nephron number also
explain hypertension vulnerability at higher (low-normal) birth-
weight ranges? In fact, several recent studies demonstrate a close
linear relation in the primate kidney between nephron number
and birth weight across the normal birth-weight range (39). In
the baboon, Gubhaju and Black showed that the fetal kidney
weight during nephrogenesis was tightly and linearly related
to nephron number (40). The autopsy study of Hughson et al.,
measuring nephron number in normal postnatal human kidneys
using gold-standard stereologic methods, demonstrated a linear
relation between nephron number and birth weight (39) (Fig. 2).
This predicts that a normally grown infant of 3 kg birth weight

3 Abbreviations used: AGA, appropriate for gestational age; angII, angiotensin II;

BP, blood pressure; GFR, glomerular filtration rate; IUGR, intrauterine growth

retardation.

Figure 1 Birth weight is inversely proportional to systolic BP in a 1966

northern Finland birth cohort. In 5960 participants born in 1966, Jarvelin et al.

examined the shape and size of the association among determinants of fetal

growth, size at birth, growth in infancy, and adult systolic and diastolic BP at

31 y (19). Unlike many prior cohorts, numerous maternal variables were

available for assessment of impact. A strong inverse relation between systolic

blood pressure and birth weight was apparent, with or without adjustment for

current weight. Similar findings were reported in 5 European cohorts by Hardy

et al. (74) and in 20 cohorts from 6 Nordic countries by Gamborg (75). Adapted

with permission from Jarvelin et al. (19).
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½i.e., birth weight appropriate for gestational age (AGA)� will go
through life with a lower nephron number than an AGA infant
of 4 kg. In striking contrast to the prenatal kidney, postnatal
kidney size is tightly linked to indices of body surface area, not to
nephron number (39). Thus, the enlarging fetal kidney responds
to growth stimuli by increasing nephron number; the postnatal
kidney responds to growth-related metabolic demand by enlarg-
ing existing nephron units.

These informative observations suggest the possibility of a
‘‘physiologic nephropenia’’ as a function of birth weight in the
normally grown AGA infant, i.e., in the absence of the asym-
metric growth restriction phenotype. If this does occur, does the
asymmetric growth-restricted phenotype predict a greater neph-
ron deficit for a given ‘‘normal’’ birth weight? Lampl et al. (41)
have in fact shown by ultrasound that 32-wk fetal kidneys of
infants subsequently born thin are smaller than those who were
not thin. It will be important to learn whether this reflects altered
nephron endowment and whether hypertension vulnerability
differs between the AGA-thin and the AGA-normally propor-
tioned infant at a given normal birth weight. Second, if birth

weight reflects nephron number, then birth weight provides the
first accessible clue to nephron number in an individual, a crucial
piece of information for clinically identifying disease vulnerability.

Two recent human studies have supported a link between
reduced nephron number and essential hypertension (42,43).
However, there is as yet no direct evidence linking reduced
nephron number to hypertension in human IUGR.

Evidence that reduced nephron number is not alone

sufficient to mediate nutritionally programmed

hypertension: a 2-hit hypothesis

Brenner and Chertow first proposed the concept of ‘‘nephron
dosing’’: reduction in nephrons with a fixed body mass or
transplantation of a small kidney into a large recipient created
an imbalance between excretory load and excretory capacity
that enhanced risk of both hypertension and renal disease (24).
In fetal undernutrition states, the reduction in kidney size (and
nephron number) in full-term offspring is typically proportional
to the reduction in body weight. At birth, then, there is no
imbalance between body size and nephron number. We have
thus proposed that in the context of congenitally fewer neph-
rons, the superimposition of postnatal body mass excess
(whether fat or lean) is required to create the imbalance that
generates hypertension. Emerging data now support the view
that nutritional programming actively induces, concomitantly
with fewer nephrons, a propensity to accelerated postnatal
growth via enhanced appetite (44).

Altered energy metabolism as a result of nutrient depriva-
tion in utero was first described by Hales and Barker (45) as the
‘‘thrifty phenotype,’’ depicting enhanced energy utilization
efficiency and insulin resistance as effective fetal strategies for
preferentially shunting fuel away from muscle to protect heart
and brain. More recently, studies of fetal undernutrition have
also shown increased appetite and enhanced deposition of more
fat than lean tissue. Vickers et al., in a rat model of severe
maternal caloric restriction throughout pregnancy, found in-
creased food intake in offspring well into adulthood, accompa-
nied by central obesity, hypertension, and insulin resistance (44).
In our microswine model of maternal protein restriction applied

TABLE 1 Maternal protein restriction reduces nephron number in multiple species

Species Maternal diet Exposure in gestation Nephron number Basal HTN Stim'd HTN Ref.

Rat

Zeman Low protein 0.0–1.0 Y (NA) — — (28)

Merlet-Benichou et al. Low protein 0.0–1.0 Y (NA) — — (29)

Woods et al. Low protein 0.0–1.0 Y 25% — — (30,71)

Vehaskari et al. Low protein 0.5–1.0 Y 28% Yes - (31)

Jones et al. Low protein 0.0–1.0 Y 30% Yes — (32)

McMullen et al. Low protein 0.0–1.0 Y 25–50% Yes — (33)

Sanders et al. Placental insuff. 0.8–1.0 Y 30% No Yes* (34)

Sheep

Gilbert et al. 50% Low calorie 0.1–0.5 Y 11% Yes — (35)

Gopalakrishnan et al. 50% Low calorie 0.2–0.5 Y 30% No — (36)

Pig

Bauer et al. Spontaneous Runting Y — — (37)

Rabbit

Bassan et al. Placental Insuff. 0.7–1.0 Y — — (38)

Human

Hinchliffe et al. (IUGR) — Y — — (27)

Leroy et al. (IUGR) — Y — — (72)

Manalich et al. (IUGR) — Y — — (73)

* Under stimulation of 2% NaCl drinking water.

Figure 2 Birth weight predicts glomerular number in human populations.

Hughson et al. performed gold-standard stereologic assessment of glomerular

number in postnatal kidneys from a U.S. population (39). Glomerular number

was positively and linearly related to birth weight, most prominently (shown

above) in younger subjects where age-dependent glomerular loss is expected to

be minimal. Limited observations above a birth weight of 4 kg preclude

conclusions at higher birth weights. ½Adapted with permission from (39).�
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during late gestation and early suckling, offspring of restricted
sows ingested an average of 20% more food (as g/kg per meal)
than control offspring (E. DuPriest, P. Kupfer, B. Lin, K.
Sekiguchi, and S. B. Bagby, unpublished data). In South African
children born small for gestational age, only those with
subsequent access to food experienced accelerated growth and
increased risk of obesity and diabetes (5). Thus, in our current
view, maternal undernutrition sows the seeds of hypertension in
offspring by directly generating 2 essential vulnerabilities: 1)
absolutely and permanently low nephron number and 2) in-
creased appetite, the latter ensuring elevated body mass via
percentile-crossing growth acceleration when postnatal food is
available. Excretory demand (body mass) thus grows to exceed
the fixed lower excretory capacity (nephron number), mandat-
ing postnatal renal adaptations to enhance excretion by mech-
anisms that create additional disease risk (see below).

According to this concept, obesity is not necessary for the
development of hypertension in those born small and subse-
quently experiencing accelerated growth. This is borne out in
human studies in the remarkable Finnish cohorts, where annual
growth data were serially collected from birth through 11–15 y
of age and subsequent adult disease could be identified by
medication records. Barker et al. showed that 1404 (of 8760)
children who later became hypertensive were born small,
exhibited an asymmetric growth phenotype, and developed
accelerated increase in BMI between 3 and 11 y, supporting the
role of an abnormal postnatal growth pattern in actualizing
disease vulnerability (1). In a further analysis, incorporating
individuals who developed diabetes and/or hypertension, those
individuals whose accelerated growth leveled off after age 7 to
achieve average BMI developed only hypertension in adulthood;
in contrast, those whose BMI continued to rise between 7 and
15 y of age developed both hypertension and diabetes (2). Thus,
obesity is not required but adds independent and well-
documented additional mechanisms (46) that promote hyper-
tension.

Evidence that the nephron number:body mass ratio

induces renin-angiotensin II activation to maintain

glomerular filtration rate

A large body of experimental work has taught us how the
individual nephron, the functional unit of the kidney, responds
to a chronic relative increase in excretory load (either via
increased body mass at a fixed nephron number or reduced
nephron number at a given body mass) (47–49) (Fig. 3). The
existing nephrons undergo enlargement involving most promi-
nently glomeruli and proximal tubules, the latter via increased
length as well as internal and external diameter (50). In the
glomerulus, capillary number and overall volume increase, the
afferent arteriole dilates, and the efferent arteriole constricts,
leading to increased glomerular capillary pressure and thereby to
increased single-nephron glomerular filtration rate (GFR). Total-
body GFR is either increased (in the case of a primary increase in
body mass) or restored toward normal (in the case of a primary
reduction in nephron number, as in uninephrectomy). Animal
studies and human clinical trials with renin-angiotensin system
blockade strongly support the view that intrarenal angiotensin II
(AngII) mediates single-nephron hyperfiltration, but mecha-
nisms are not fully understood.

A recent hypothesis, compellingly put forward by Thomson
and colleagues (51) to explain diabetes-related glomerular hy-
perfiltration, may prove relevant to the pathophysiology of hy-
pertension in nutritionally programmed disease. This proposes
that proximal tubular hypertrophy is the primary event, driving

a macula-densa-mediated renin-AngII activation, AngII-mediated
efferent vasoconstriction, and glomerular hyperfiltration. Ac-
cording to this scenario, as postnatal accelerated growth proceeds
in the face of low nephron number, the longer and more Na-avid
proximal tubule reabsorbs excess NaCl and delivers less to the
macula densa, triggering a signal (low ½NaCl�) that is perceived as
inadequate GFR. This causes sustained resetting of the macula
densa signal to increase GFR until delivery to the sensing site is
restored to normal. The macula densa response includes 2 key
effectors: increased renin release (inducing efferent vasoconstric-
tion) and reduced ATP (causing afferent vasodilation) (52).
Sanders et al. have recently provided indirect support for this
mechanism in growth-restricted rat offspring after placental
restriction (53). According to these investigators, GFR is restored
to normal by macula-densa-mediated single-nephron hyper-
filtration, but with important disadvantageous consequences: 1)
enhanced intrarenal AngII contributes to NaCl retention in excess
of body fluid needs, promoting hypertension; and 2) vulnerability
to renal injury and progressive loss of existing nephrons via
persistently high glomerular capillary pressure, promoting glo-
merulosclerosis and proteinuria with subsequent tubulointersti-
tial inflammation (54) (Fig. 3).

Figure 3 Projected renal responses to a relative decrease in nephron number.

A reduction in nephron number (excretory capacity) and/or an increase in body

mass (excretory load) induces a stereotypic response in available functioning

nephrons. Glomerular hypertrophy (increased volume and capillary number) is

associated with hyperfiltration (via afferent dilatation and efferent constriction,

which increases capillary pressure) (Top panel ); tubule enlargement (predom-

inantly the proximal tubule via increased wall thickness and tubule length) is

associated with increased Na reabsorption, potentially inducing secondary renin-

AngII activation via macula densa signals (Lower panel, see text).
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Reduced nephron number does not always lead to

hypertension: why?

Although reduced nephron number may be capable of confer-
ring vulnerability to hypertension, it clearly does not always do
so. Contrast, for example, the effects of fewer nephrons from
birth with those of loss of nephrons in the mature individual.
Congenitally reduced nephron number in humans, e.g., renal
agenesis, carries a substantial risk of later hypertension and renal
disease (55). Remarkably, however, uninephrectomy in adult
renal transplant donors has a very low risk of hypertension or
proteinuria, even after decades of follow-up (56). Animal studies
support this age-dependent difference (57,58). The differing
intensity of the renal adaptation to reduced nephron number
may be key. Relative to the adult, the immature mammal has
increased renal growth potential for both hypertrophy and
hyperplasia (59,60), and an increased basal level of renin-AngII
activity (61,62). The compensatory hyperfiltration in response
to nephron deficit is substantially more effective in the young as
compared with the mature kidney (63). A more vigorous com-
pensatory tubular hypertrophy and/or a greater AngII response
in youth may proportionally enhance hypertension and renal
disease risk in the long term because it also more effectively
preserves GFR in the short term.

A third nutritionally programmed pathway may

contribute to hypertension risk

So far, discussion has focused on intrarenal renin-AngII activa-
tion as a consequence of excess body weight gain postnatally.
However, there is also evidence that primary programming of
the renin-AngII system components may be induced by nutrient
deficit in utero and manifested by enhanced activity postnatally,
contributing to hypertension and renal risk. This could, for
example, amplify the intrarenal AngII response when body
weight begins to increase. Many studies in experimental animal
models report prenatal and/or postnatal abnormalities of renal
renin-AngII parameters in offspring following fetal nutrient
restriction, e.g., low intrarenal AngII levels at birth (30) and
increased renal AngII Type 1 receptors (64–66). Franco et al.
have reported in rats that intrauterine nutrient deficits (50%
maternal calorie restriction) lead, in 4-mo-old offspring, to en-
hanced AngII-induced oxygen free radical formation, the latter
blocked by inhibitors of NADPH oxidase (67). It is therefore
possible that fetal nutritional deficit operates via a third pro-
hypertensive pathway, direct prenatal programming of renin-
AngII components, leading to postnatally enhanced AngII
production, amplified AngII responses, and/or accelerated AngII-
dependent injury via oxidative pathways.

In summary, maternal and/or fetal undernutrition activates
multiple compensatory fetal responses that persist postnatally,
promoting later development of hypertension and renal disease.
The effects of nutritional programming are present at birth and,
via structural and functional mechanisms, create disease vulner-
ability. The latter is manifest by the asymmetric growth-restricted
phenotype and is mediated by reduced nephron number, by
altered appetite/energy metabolism, and by the potential for
intrinsically enhanced renin-AngII activity. If the postnatal
environment presents adequate nutrients (or overrides appetite
via highly palatable foods), the programmed increase in appetite
ensures excess food intake, accelerated growth, excess body
mass for nephron number, and intrarenal renin-AngII activation
that is appropriate for restoration of GFR but inappropriate for
body fluids and BP. The altered energy metabolism, with insulin
resistance and propensity for deposition of fat more than lean
tissue and central more than peripheral fat distribution, simul-

taneously favors obesity and the additional prohypertensive
mechanisms that this brings.

Maternal undernutrition is a dominant theme in developing
countries, particularly as individuals born small in nutrient-
scarce rural areas migrate to urban areas, where they experience
substantial increases in caloric availability and intake (6). A
similar dynamic affects new immigrants acclimating to West-
ernized countries. That suboptimal maternal nutrition is also
important in residents of developed countries was recently
shown by Robinson et al. in the UK (68): in a cohort of women
of childbearing age whose diet was ranked in quartiles based on
a ‘‘prudent diet’’ score and educational level, 55% of the least-
educated women fell into the ‘‘least prudent’’ diet quartile. Al-
though this article has not touched on the opposite end of the
nutrition spectrum, maternal overnutrition is of equal concern
(69,70): via high risk of obesity and diabetes in offspring of
obese mothers or mothers on a high fat diet, maternal overnu-
trition also creates risk of adult hypertension and renal disease.
The nutritional sciences community will be critically important
for creating mechanisms to identify at-risk individuals, for car-
rying out research to define molecular mechanisms and effective
interventions, and for developing public policies to counteract
the abnormalities of maternal nutrition that threaten the health
of future generations.
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